Title Elemental Monte Carlo Methodsin Computer Science
Brief Overview:

This unit will introduce computer science students to the use of Monte Carlo methods
to evaluate mathematical problems and models. Statistical simulations will be used to
determine the value of p, to integrate a continuous function, and to determine
probabilities. C++ will be the programming language referred to throughout this unit,
but it could be adapted to use other programming languages or spreadsheets.
Alternative solutions using a spreadsheet are provided for two of the labs.

Linksto NCTM Standards:

Mathematics as Problem Solving
Students will apply mathematical modeling to real-world situations.

Mathematics as Communication
Students will use mathematical terms to effectively communicate their results.

Mathematical Connections
Students will recognize equivalent representations of a problem.

Statistics

Students will design a statistical experiment to study a problem, conduct the
experiment viaa C++ program, and interpret and communicate the outcomes.

Probability
Students will use simulations to estimate the probability of an event occurring.

Grade/L evel:

Grades 10-12
Duration/L ength:

This activity will require five regular class periods or two and one-half block periods.
Prerequisite Knowledge:

Students should have working knowledge of the following skills:

Determination of percentages

Calculation of area of simple geometric shapes
Construction of C++ loop structures

The use of apvectors or arrays

Objectives:
Students will:

learn to use the random function.

use random numbers to statistically determine the area within a circle and under a
curve.

determine the probability of two people in a group having the same birthday.

gan an understanding of Monte Carlo techniques and their use in rea-world
situations.

M aterials/Resour ces/Printed M aterials:

Computer with C++ compiler
Accompanying Lab and Assignment Sheets

Development/Procedur es:

Using Teacher Note 1, the teacher will introduce students to basic Monte Carlo
techniques for determining the area under a curve by using random numbers. The
basic concept employed is to randomly cover a rectangle enclosing the function (or
figure) with points and determining the ratio of points on or below the function (or
points on or within the figure) to the total number of points.

Using Lab 1, students will verify the hypothesized method of determining area
working first with simple rectangle, then a circle, and, finally, a more complex
function.

Assign project as a follow-on activity. Project results may be used to support
enrichment lab exercise.

Using Lab 2, students will use the Monte Carlo method learned in Lab 1 to determine
how high an experimental rocket will be at shut down with specified factors.

Using Teacher Note 2, the teacher will introduce students to other uses of Monte
Carlo techniques, e.g., the determination of probabilities.

Using Lab 3, the students will develop an agorithm and program to determine the
probability of two people in groups of 20, 30, or 40 having the same birthday.

Evaluation:

This section will be performance-based (a performance assessment task), in
accordance with the move to performance-based assessment. See assessment rubric.

Extension/Follow Up:

Have the students choose an application problem from their project report for which
they could write an algorithm and program using Monte Carlo methods.

Authors:

Tracy A. Birell Charles W. Brewer
Mount Vernon High School Lake Braddock Secondary School
Alexandria, VA Burke, VA

Elemental Monte Carlo Methods in Computer Science

Teacher Note 1

Using Overhead 1, introduce Monte Carlo methods using the following sequence:

Have students determine the area of the large rectangle. (6 square units)
Have the students determine the area of the shaded rectangle. (4 units)

. . 4
Have the students determine the ratio between the two rectangles. (E)

Pose the following question:

“If you toss 100 darts at the large rectangle and the darts are equally likely to
land on any spot in the rectangle, how many would you expect to land in the
shaded rectangular area?” (approximately 67, i.e., two-thirds of 100)

Prepare students for first lab exercise by:

Asking students how the darts might be simulated in a computer program.
(Alternatively, a spreadsheet can be used instead of a C++ program. See Lab
1A)

Introducing students to the random number generator and randomize functions.
Discuss the randomize function, randomization of integers, and randomization of
doubles.

Having students complete Lab 1 using Shell 1. Overhead 2 can be used to
discuss the second part of Lab 1.

Assign research project (Project Sheet) to increase student understanding of use of
Monte Carlo techniques and as preparation for possible enrichment lab activity

Indicate to students that they should use both Internet and library resources in
their research.

Recommend students be given one week to complete this assignment.

Prepare students for Lab 2 by:

Having students read lab sheet, answer questions, and develop algorithm for
computer model as homework

In class, review algorithms before having students develop computer program (or
spreadsheet) to solve the problem.

Elemental Monte Carlo Methods in Computer Science

Teacher Note 2

In the first part of this unit, random numbers were used to estimate the area under a
curve. In this part, random numbers will be used to determine the probability of an
event occurring. The question to be considered and programmed is one that is often
discussed in math classes when discussing probabilities, specifically, “in a group of
a given size, what is the likelihood of two people having the same birthday?”

To introduce the problem, the teacher may pose the question: “Do you think
two people in the class have the same birthday?” And then follow-up with a
check on birthdays. (For a class of thirty, the probability is approximately 70
percent.)

Ask students how they might determine an estimate of this probability using the
tools that have been explored in the previous labs.

One technique is to use a loop within a loop and the random function. First,
create an apvector (or array) of counters of length 365. Within the inner
loop, use the random function to determine the index of the apvector and
then increment that element. After the desired number of loop iterations
(the number of people in the group), search the apvector for any element
that is greater than 1. Increment a counter for each occurrence. Repeat the
outer loop multiple times to estimate the probability. The probability is the
total occurrences divided by the number of tries.

A second method is similar to the first except that the apvector would
represent people and the random function would be used to generate a
birthday for each person (element). The search function would then have to
compare elements to find any matches and increment a counter for each
match. (This method will require more code as a loop within a loop will be
required for this search.) As in the first method, repeat multiple times to
determine the probability.

Elemental Monte Carlo Methods in Computer Science - OVERHEADS

Overhead 1

Overhead 2

Elemental Monte Carlo Methods Name
In Computer Science
Project Date

Prologue: In many fields, e.g. medical research, insurance, physics, etc., Monte
Carlo techniques are used to determine solutions to problems that are resistive
to more conventional mathematical analysis.

Directions: Using the Internet and library resources, research Monte Carlo
techniques. Find five examples of where Monte Carlo techniques are used in
business, research, or other areas. Briefly describe (in three to five sentences
each) how Monte Carlo techniques are used in each example.

Elemental Monte Carlo Methods
Name

In Computer Science

Lab 1
Date

1. Given the following rectangles, modify the program, Shell 1, to simulate the
throwing of n darts at the large rectangle. Each dart is equally likely to hit
any spot within the large rectangular region.

0.3

0.2

0.0 4.0

2. Run your program with different values of n, the number of darts thrown.
Complete the following table.

Number of Number of Ratio Estimated
Darts Darts in the Area
(n) Shaded Region

1,000

5,000

10,000

15,000

20,000

3. Given the following unit circle, modify the program, Shell 1, to simulate
throwing n darts at the square area. Each dart is equally likely to hit any
spot within the square.

=
-

4. Run your program with different values of n, the number of darts thrown, to
complete the following table.

Number of Number of Ratio Estimated
Darts Darts in the Area
(n) Shaded Region

1,000

5,000

10,000

15,000

20,000

What does the area represent?

/[Shell 1 - For use with Labl - Repl ace ????? with appropriate code

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

voi d randonXY(doubl e &, double &y);

/1 Pre: x and y are decl ared

/1 Post: Random val ues between 0 and 1 are returned

/1 for x and y coordi nates.

doubl e rati o(doubl e x1, double yl1, double x2, double y2, int n);

/1 Pre: x1, y1 are the |lower-right coordinates and x2, y2 are

/1 t he upper-1left coordi nates of an rectangl e encl osing region

/1 of interest for the function. n is nunber of random points used.

//Post: Ratio of random points on or below the function

/1 to total random points in rectangle is returned.

int main()

{

doubl e Ratio, Area, RatioTotal = 0, AreaTotal = O;

double x1 = ??, yl1 =?? ; /1 lower-left coordinates of rectangle

double x2 = ??, y2 =?7; /1 upper-right coordi nates of rectangle

int n = ??, /1 Nunber of tries

random ze();

for (int j=0; j<n; j++) /1 Loop for multiple tests
{ /1 of sanme conditions
Ratio = ratio (x1, yl1l, x2, y2, 30000);
Rati oTotal +=Rati o; /1 Sum of ratios
Area = ???2?7?7??7, /1 Area under the curve
AreaTotal ????2?????7; /1 Sum of areas

cout <<"Ratio of areas is: "<< ?2????? <<end
<<" The area within the curve is "<<??????<<endl

Rati o = ???22??2??2?2??7; /1 average of ratios

Area = ???2??27???2?7?7; /1 average of areas

cout <<endl <<"For "<<n<<" tries, the average ratio was "<<Ratio
<<" and the Area was "<<Area<<end|

return O;

}
voi d randonXY(doubl e &, doubl e &y)

X ???°?°°7?7?7°7,

y P???°°7°7°77

}

doubl e rati o(doubl e x1, double yl1, double x2, double y2, int n)
{doubl e x, y, count=0;

for (int i =0; i<n; i++)
{ randonXY(x,Yy);
X = X*(x2 - x1) + x1; /! Expand random coordi nates to width and | ength
y = ?2???27°?°°7?7?77, /1 of rectangle and zero on |ower-|eft
coordi nate
2???22??2?°°7°72°7°: /1 Enter appropriate test here. My be
} /1 multiple lines.

return count/n;

}

Elemental Monte Carlo Methods
Name

In Computer Science

Lab 2
Date

Prologue: Have you ever stood on a tenth floor balcony and looked down? Or,
have you ever stood on a bridge and looked down only to see miles of water?
Did you have the urge to drop a penny and watch it fall until it hit the ground or
water? Did you wonder how long it would take the penny to hit the ground or
water? Or, how fast do you think the penny was traveling? What if you
dropped a golf ball and a tennis ball simultaneously, which one would hit the
ground or water first? Believe it or not, these everyday questions have simple
answers. You have had the knowledge and skills to answer these questions for a
very long time. Do you try to answer these questions while you are watching the
penny fall? Well, if not, maybe it is time to start!

Did you know that you have something in common with scientists, astronauts,
mathematicians, engineers, pilots, truck drivers, track coaches, and ...? They all
are concerned with how fast something or someone can travel, the rate of
acceleration, distanced traveled, or how long it may take to go from point A to
point B. Pilots are concerned with how quickly they can get you from one city to
the next, safely of course. Engineers are concerned with how quickly they can
get the astronauts to the moon. You and your friends are concerned with how
fast you must run the break the school record for the mile or how long it will
take you to get to your favorite amusement park.

Well, what do you think we can conclude from these examples? Of course, math
and science is way of life and we use them everyday!

Problem: Today we are going to examine the flight pattern of an experimental
rocket. The rocket will generate 600,000 pounds of thrust. Its initial weight is
500,000 pounds of which 400,000 pounds is fuel. 1t will consume fuel at a rate
of 120,000 pounds per minute.

The following equation represents the velocity of the rocket:

. thrust . .
Ve ocity = - D) * gravity * time
Y= Creight - fuelfiow™ time 2 9"

The graphical representation of the rocket's velocity would look like this:

- Complete:

1. How long into the flight before the engine will shut down?

2. How high will the rocket be at shut down? Write an algorithm and
program to estimate this.

Elemental Monte Carlo Methods Name
In Computer Science
Lab 3 Date

1. Using a Monte Carlo simulation, estimate the probability that at least two
people in a random group of people have birthdays on the same day. For
simplicity, disregard leap years.

Suggestions:

Use an apvector of integers to record whether a birthday occurs on a given
date.

Use the random function to determine the apvector index and increment the
apvector element to indicate a birthday. Repeat for the number of
members in the group.

Determine the number of days for which more than one person has a
birthday.

Repeat procedure multiple times to obtain the probability.

(Note. You might chose to use the apvector to represent the group and the
random function to generate the birthday for each element. Then you would
check for members (elements) having the same birthday.)

2. Run your program several times to complete the table below.

Members Probability

in of
Group same Birthday

20

30

40

ELEMENTAL MONTE CARLO METHODS
IN COMPUTER SCIENCE

Assessment Rubric

* Rectangle Circle Rocket Birthday Extension
Program Program Program Program Program

Neatness &
Style

points

Comments

points

Correctness
of
Algorithm

points

Correct Use
of the
Random
Number
Function

points

Overall
Uniqueness
& Creativity
of Program

points

TOTAL
POINTS

* Teachers should fill in the points required according to their individual
grading criteria.

Name Date Period

Lab Solutions

/[/Lab 1 - Part 1 - Find Area of Shaded Rectangle

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

voi d randonXY(doubl e &, double &y);

/1 Pre: x and y are decl ared
//Post: Random val ues between 0 and 1 are returned
/1 for x and y coordi nates.

doubl e rati o(doubl e x1, double yl1, double x2, double y2, int n);

/1 Pre: x1, y1 are the |lower-right coordinates and x2, y2 are

/1 t he upper-left coordi nates of an rectangl e encl osing region

!/ of interest for the function. n is nunber of random points used.

//Post: Ratio of random points on or below the function

!/ to total random points in rectangle is returned.

int main()

{

doubl e Ratio, Area, RatioTotal = 0, AreaTotal = O;

double x1 = 0, y1 = 0; /1 lower-left coordinates of rectangle

double x2 = 3, y2 = 4; /1 upper-right coordi nates of rectangle

int n = 10; /1 Nunmber of tries

random ze();

for (int j=0; j<n; j++) /1 Loop for multiple tests
{ /1 of sanme conditions

Ratio = ratio (x1, yl1l, x2, y2, 10000);

Rati oTotal +=Rati o;

Area = Ratio * (x2 - x1) * (y2 - yl);

AreaTot al +=Area;

cout <<" Ratio of areas is: "<< Ratio <<end
<<"The area under the curve is "<< Area<<end|

}

Ratio = RatioTotal / n;

Area = AreaTotal / n;

cout <<endl <<"For "<<n<<" tries, the average ratio was "<<Ratio
<<" and the Area was "<<Area<<end|

return O;

}

voi d randonXY(doubl e &, doubl e &y)
{
X random(32767)/ 32767. 0;
y random(32767)/ 32767. 0;
}

doubl e rati o(doubl e x1, double yl1, double x2, double y2, int n)

n; i++)

{
doubl e x=0, y=0, count =0;
for (int i =0; i<

{

randonXY(x, y);

X = X*(x2 - x1) + x1;
| ength
y =y*(y2 - yl) + yl
coor di nat e.
if (y <=3)
count ++;
}
return count/n;
}
/* Output
Ratio of areas is: 0.7458
The area under the curve is
Ratio of areas is: 0.7507
The area under the curve is
Ratio of areas is: 0.751
The area under the curve is
Ratio of areas is: 0.7542
The area under the curve is
Ratio of areas is: 0.7534
The area under the curve is
Ratio of areas is: 0.7526
The area under the curve is
Ratio of areas is: 0.7466
The area under the curve is
Ratio of areas is: 0.7485
The area under the curve is
Ratio of areas is: 0.7574
The area under the curve is
Ratio of areas is: 0.7466
The area under the curve is

/1

/1

/1

9.

8.

Expand random coordi nates to width and
of rectangle and zero on |ower-|left

Test for shaded rectangul ar area

. 9496

. 0084

. 012

. 0504

. 0408

. 0312

. 9592

. 982

0888

9592

For 10 tries, the average ratio was 0.75068 and the Area was 9.00816

*/

Lab Solutions

//lLabl - Part 2 - Find the Area of the Unit Circle

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

voi d randonXY(doubl e &, double &y);

/1 Pre: x and y are decl ared
//Post: Random val ues between 0 and 1 are returned
/1 for x and y coordi nates.

doubl e rati o(doubl e x1, double yl1, double x2, double y2, int n);

/1 Pre: x1, y1 are the |lower-right coordinates and x2, y2 are

/1 t he upper-left coordi nates of an rectangl e encl osing region

/1 of interest for the function. n is nunber of random points used.

//Post: Ratio of random points on or below the function

/1 to total random points in rectangle is returned.

int main()

{

doubl e Ratio, Area, RatioTotal = 0, AreaTotal = O;

double x1 = -1, y1 = -1; /1 lower-left coordinates of rectangle

double x2 =1, y2 = 1; /1 upper-right coordi nates of rectangle

int n = 10; /1 Nunber of tries

random ze();

for (int j=0; j<n; j++) /1 Loop for multiple tests
{ /1 of sanme conditions

Ratio = ratio (x1, yl1l, x2, y2, 30000);
Rati oTotal +=Rati o;
Area = Ratio * (x2 - x1) * (y2 - yl);
AreaTot al +=Area;
cout <<" Ratio of areas is: "<< Ratio <<end
<<"The area within the curve is "<< Area<<endl|

}

Ratio = RatioTotal / n;

Area = AreaTotal / n;

cout <<endl <<"For "<<n<<" tries, the average ratio was "<<Ratio
<<" and the Area was "<<Area<<end|

return O;

}
voi d randonXY(doubl e &, doubl e &y)

r andon(32767) / 32767. 0;
r andom(32767) / 32767. 0;

g X -

doubl e rati o(doubl e x1, double yl, double x2, double y2, int n)
{
doubl e x=0, y=0, count =0;
for (int i =0; i< n; i++)
{
randonXY(x, y);
X = X*(x2 - x1) + x1; /1 Expand random coordi nates to width and
| ength
y = y*(y2 - yl) + yl; /1 of rectangle and zero on | ower-|eft
coordi nat e.
if (y*y+x*x-1<=0) /1 Test for shaded circul ar area
count ++;
}

return count/n;

}
/* Output

Ratio of areas is: 0.786367

The area within the curve is 3.14547
Ratio of areas is: 0.786433

The area within the curve is 3.14573
Ratio of areas is: 0.783167

The area within the curve is 3.13267
Ratio of areas is: 0.783433

The area within the curve is 3.13373
Ratio of areas is: 0.7842

The area within the curve is 3.1368
Ratio of areas is: 0.7878

The area within the curve is 3.1512
Ratio of areas is: 0.7839

The area within the curve is 3.1356
Ratio of areas is: 0.7836

The area within the curve is 3.1344
Ratio of areas is: 0.783067

The area within the curve is 3.13227
Ratio of areas is: 0.781267

The area within the curve is 3.12507

For 10 tries, the average ratio was 0.784323 and the Area was 3.13729

*/

Lab Solutions

//Lab 2 Solution - Rocket Problem

/* Gven the equation for velocity of a rocket as
velocity = thrust/(weight - fuelflow * tinme) * time - gravity * tine.
For this problemthrust = 8,000,000 | bs, weight = 500,000 |bs, and
fuelflowis 120,000 I bs/mn or 2,000 | bs/sec and there is 400,000 | bs
of fuel avail able.

The tine of burnout will be 200 seconds. The corresponding velocity
is 16,000 ft/sec. For convenience, an upper right coordi nate of

200, 20000 will be used. (Any value 16,000 or greater could be

used for the y-coordinate.

*/

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

voi d randonXY(doubl e &, double &y);

/1 Pre: x and y are decl ared

/1 Post: Random val ues between 0 and 1 are returned

/1 for x and y coordi nates.

doubl e rati o(doubl e x1, double yl1, double x2, double y2, int n);

/1 Pre: x1, y1 are the |lower-right coordinates and x2, y2 are

/1 t he upper-left coordi nates of an rectangl e encl osing region

/1 of interest for the function. n is nunber of random points used.
//Post: Ratio of random points on or below the function

/1 to total random points in rectangle is returned.

int main()

{
doubl e Ratio, Height, RatioTotal = 0, HeightTotal = O;

double x1 = 0, y1 = 0; /1 Starting coordi nates
doubl e x2 = 200, y2 = 20000; /1 Coordinates at burnout
int n = 10; /1 Nunber of tries

random ze();

for (int j=0; j<n; j++) /1 Loop for multiple tests

/1 of sanme conditions

Ratio = ratio (x1, yl1l, x2, y2, 30000);

Rati oTotal +=Rati o;

Hei ght = Ratio*(x2 - x1)*(y2 - y1)/5280; [// Calcul ate area under curve
/1 and convert to mles

Hei ght Tot al +=Hei ght ;

cout <<" Ratio of areas is: "<< Ratio <<end

<<"The hei ght at burnout is "<< Hei ght <<endl

Rati o = RatioTotal /n;

Hei ght = Hei ght Tot al / n;

cout <<endl <<"For "<<n<<" tries, the average ratio was "<<Ratio
<<" and the hei ght was "<<Hei ght <<endl

return O;

}

voi d randonXY(doubl e &, doubl e &y)
{
X randon(32767)/ 32767. 0; /1 Convert integer output to double
y random(32767)/ 32767. 0;

}

doubl e rati o(doubl e x1, double yl1, double x2, double y2, int n)

doubl e x=0, y=0, count =0;
for (int i =0; i<n; i++)

randonXY(x, y);

X = X*(x2 - x1) + x1; /1 Expand random coordi nates to width and
l ength
y = y*(y2 - yl) + yl; /1 of rectangle and zero on |ower-|eft

coor di nat e.
if (x * 16* (600000/(500000-2000*x) -1) - y >=0) //Velocity equation
count ++;
}

return count/n;

}
/* Qut put

Ratio of areas is: 0.1613

The height at burnout is 122.197
Ratio of areas is: 0.1655

The hei ght at burnout is 125.379
Ratio of areas is: 0.159167

The hei ght at burnout is 120.581
Ratio of areas is: 0.159067

The hei ght at burnout is 120.505
Ratio of areas is: 0.1638

The height at burnout is 124.091
Ratio of areas is: 0.163033

The height at burnout is 123.51
Ratio of areas is: 0.167333

The height at burnout is 126.768
Ratio of areas is: 0.163167

The height at burnout is 123.611
Ratio of areas is: 0.1657

The height at burnout is 125.53
Ratio of areas is: 0.1631

The height at burnout is 123.561

For 10 tries, the average ratio was 0.163117 and the hei ght was 123.573

*/

Lab Solutions
[* Lab 3 - Probability of Same Birthday

This lab finds the probability of two people in a group having the
same birthday.

*/

#i ncl ude <i ostream h>

#i ncl ude <stdlib. h>

#i ncl ude <apvector. h>

voi d addBi rt hdays (apvector <int> &year, int nunj;

/1 Pre: year is declared with 365 elenents. numis defined as the
/1 nunber of people in the group.

//Post: elenments of year will be randomy incremented to sinulate
/1 a birthday of a given date.

i nt searchDates (const apvector <int> &year);

/1 Pre: year is defined with el enents indicating how many birthdays
/1 occurs on a given date.

//Post: Function returns 1 if a birthday occurs nore than once.

int min ()
i nt nunber; /1 size of group
random ze(); /1 Generate random seed for random
function
whi | e(1) /1 Big loop for nultiple runs
{
doubl e total Matches = 0O; /1 nunber of birthday matches

cout << " \n\nWhat is the size of the group (-1 to quit): ";
cin >> nunber;

i f (nunmber == -1)
br eak;
for (int n = 0; n < 1000; n++)
{
apvector <int> dates(365, 0); /! date declared and initialized
at 0

addBi rt hdays (dates, nunber);

t ot al Mat ches += searchDates (dates);
cout << "The probability of matching birthdays is: "
<< (total Mat ches)/ 1000<<endlI

}

return O;
}
voi d addBi rt hdays (apvector <int> &year, int nun)
{

for(int i =0; i < num i++)

year [randonm(365) | ++;

i nt searchDates (const apvector <int> &year)

{

for (int i =0; i < 365; i++)
if (year[i] > 1)
return 1;
return O;
}
/* Output

VWhat is the size of the group (-1 to quit): 20
The probability of matching birthdays is: 0.429

VWat is the size of the group (-1 to quit): 30
The probability of matching birthdays is: 0.701

VWhat is the size of the group (-1 to quit): 40
The probability of matching birthdays is: 0.897

VWat is the size of the group (-1 to quit): -1
*/

Elemental Monte Carlo Method — Lab 1A Using a Spreadsheet

PROBLEM: To find the area of the shaded rectangle.

TECHNIQUE: Generate Random numbers within a rectangle counting the

points that fall within the shaded region. The ratio of points
within total points should equal the respective areas.

Method: The formula used for generating the random x-coordinates is =Rand()*4

and the random y-coordinate is =Rand()*3. The output will be tested against

the equation of a rectangle to determine if on or within the shaded rectangle.

If true, a one will be returned. These are summed and divided by the number
of iterations to get the ratio of the areas. The area of the shaded region was

the calculated by multiplying the area of the larger region by the ratio.

Number of Random Random Test Total Points Ratio Area of the
Iterations X' 'y 0=No with YES (1) Shaded
1=Yes Region
1 2.342086 2.512774 0 0 .0000 .0000
2 .831967 .589835 1 1 .5000 6.0000
3 3.591924 402731 1 2 .6667 8.0000
6 1.133593 1.857807 1 3 .5000 6.0000
5 1.896600 .157458 1 4 .8000 9.6000
6 1.859915 2.032566 0 4 6667 8.0000
7 3.069154 467588 1 5 7143 8.5714
Number [Random [Random Test Total Ratio Area of the
of X' 'y 0=No Points with Shaded
Iterations 1=Yes YES (1) Region
=RAND()*4 [=RAND()*3 [=IF(C19<=2,1,0) =D19 =E19/A19 [=12*F19
=RAND()*4 [=RAND()*3 [=IF(C20<=2,1,0) =E19+D20 =E20/A20 [=12*F20

Elemental Monte Carlo method — Lab 1B Using a Spreadsheet

Problem to find the area in a unit circle using Monte Carlo methods

Technique is to generate random numbers within a square enclosing
the unit circle and to count those falling within the circle. The ratio
of points within to total points should equal the ratio of the respective

areas.

The formula used for generating the random coordinates is
=RAND()*2 -1. The output will be tested against the equation of a

circle to determine if on or within the circle. If so, a one will be returned.

These are summed and divided by number of iterations to get the ratio of areas.

iterations random X
1 0.118813
2 -0.493962
3 0.007375
4 -0.493227
5 0.444345
6 -0.421598
7 -0.448168
8 -0.480206
9 -0.885788
10 -0.212889
11 -0.544367
12 0.120948
13 -0.928332
14 0.342411
15 0.587820
16 0.929915
17 0.886786
18 0.412987
19 -0.104506

iterations random X

=RAND()*2 -1
=RAND()*2 -1

=RAND()*2 -1

random y

-0.719368
-0.774098
0.849107
-0.707415
0.332874
-0.091118
0.961725
0.321219
-0.906082
-0.364623
0.194043
0.254623
-0.728447
-0.757340
-0.596833
-0.885199
-0.447817
0.368748
0.071658

random y

=RAND()*2 -1
=RAND()*2 -1
=RAND()*2 -1

test points ratio of Area of
within points circle
circle
1 1 1.000000 4.0000
1 2 1.000000 4.0000
1 3 1.000000 4.0000
1 4 1.000000 4.0000
1 5 1.000000 4.0000
1 6 1.000000 4.0000
0 6 0.857143 3.4286
1 7 0.875000 3.5000
0 7 0.777778 3.1111
1 8 0.800000 3.2000
1 9 0.818182 3.2727
1 10 0.833333 3.3333
0 10 0.769231 3.0769
1 11 0.785714 3.1429
1 12 0.800000 3.2000
0 12 0.750000 3.0000
1 13 0.764706 3.0588
1 14 0.777778 3.1111
1 15 0.789474 3.1579
test points ratio of area of
within points circle
circle
=IF(B15*B15+C15*C15-1<=0,1,0) =D15 =E15/A15 =4*F15
=IF(B16*B16+C16*C16-1<=0,1,0) =E15+D16 =E16/A16 =4*F16
=IF(B17*B17+C17*C17-1<=0,1,0) =E16+D17 =E17/A17 =4*F17

JSi

Elemental Monte Carlo Methods in Computer Science

‘ | Using Spread sheets ‘

| Lab 1A |

PROBLEM: To find the area of the enclosed rectangie.

‘ | ?

TECHNIQUE: Generate Random numbers within a rectangle counting the

i
|
|
I

points that fall within the shaded region. The ratio of points |

within to total points should equall the respective areas. i

| } | |

Method: The formula used for generating the random x-coordinates is =Rand()*4

and the random y-coordinate is =Rand()*3. The output will be tested against

the equation of a rectangle to determine if on or within the shaded rectangle.

If true, a one will be returned. These are summed and divided by the number

of iterations to get the ratio of the areas. The area of the shaded region was

the calculated by multiplying the area of the larger region by the ratio.

Number of - L, Test Total Points .
. Random 'x Random 'y 0 =No . Ratio
Ilterations with YES (1)
1= Yes
1 3.229947 2.860649 0 0 .0000
2 3348478 071826 1 1 5000
3 2.248865 1.036554 1 2 6667
6 2950945 1.632011 1 3 5000
5 2.072826 2.617139 0 3 6000
6 2.065548 2.555150 0 3 /5000
7 2.590283 2761697 0 3 4286
8 010726 257531 1 4 .5000
9 2.182977 843839 1 5 5556
10 3.864213 1.977154 1 6 6000
11 3.281221 2.268200 0 6 5455
12 1.714302 1.621786 1 7 5833
13 1.008820 1.198903 1 8 6154
14 463819 057039 1 8 6429
15 010647 2.815088 0 8 6000
16 1.412125 2.615536 0 g 5625
17 1.327121 1.811326 1 10 5882
18 2.499661 2662255 0 10 5556
19 2.012328 1.635576 1 11 5789
20 3.923144 1.629803 1 12 6000
21 2.040518 1.927566 1 13 6190
22 770815 1.263228 1 14 6364
23 3.023650 1.791704 1 15 6522
24 111002 1.957448 1 16 6667
25 3.000413 730751 1 17 6800
26 3.901323 1.341401 1 18 6923
27 3.734501 1.534766 1 18 7037
28 1.376068 1570494 1 20 7143
29 3.209838 1.460439 1 21 7241
30 .664603 603682 1 22 7333

Y5

31 3.906483 1.395200 1 23 7419
32 2.416463 1.896051 1 24 7500
33 932606 747614 1 25 7576
34 3.972070 1.947193 1 26 7647
35 2542501 2.016496 0 26 7429
36 2.747459 1.636826 1 27 7500
37 3.644492 1.905796 1 28 7568
38 1.404642 461013 1 29 7632
39 3.837838 1.245175 1 30 7692
40 249612 1.499534 1 31 7750
41 288830 555257 1 32 7805
42 1.443983 2.810365 0 32 7619
43 2.204322 1.224178 1 33 7674
44 1.491061 2.290961 0 33 7500
45 558066 .160345 1 34 7556
46 1.613584 .384805 1 35 7609
47 3.849129 2.802003 0 35 7447
48 3.137963 105786 1 36 7500
49 2.784816 1562126 1 37 7551
50 2.521936 . 272836 1 38 7600
51 774790 1.152623 1 39 7647
52 2.053008 1542475 1 40 7692
53 3.4399965 2285734 0 40 7547
54 1.050902 2.831350 0 40 7407
55 1.753413 317952 1 41 7455
56 1.117989 236416 1 42 7500
57 617550 474370 1 43 7544
58 1.806389 423655 1 44 7586
59 1.395017 .346872 1 45 7627
60 1.310318 2261182 0 45 7500
61 1.477213 1.700385 1 46 7541
62 550307 2.111870 0 46 7419
63 1.410302 2.307718 0 46 7302
64 3.420340 2.734701 0 46 7188
65 006248 2.136445 0 46 7077
66 2.207280 655586 1 47 7121
67 2.537326 1.142749 1 48 7164
68 3.920259 571872 1 49 7206
69 1.704373 990120 1 50 7246
70 3.493866 1.597658 1 51 7286
71 2.105739 1.231078 1 52 7324
72 1.303190 1.050090 1 53 7361
73 3.471245 2.563266 0 53 7260
74 3.937557 1.471931 1 54 7297
75 3.588419 2.472959 0 54 7200
76 2.711416 2.567689 0 54 7105
77 1.663270 2.905238 0 54 7013
78 3.817444 2.976462 0 54 6923
79 3.959315 462513 1 55 6962
80 1.281373 971401 1 56 7000
81 1.209588 762788 1 57 7037

(B

82 .213903 979431 1 58 7073
83 . 1.590552 1.627656 1 59 .7108
84 1.660292 1.841093 1 60 7143
85 2.572727 1.013088 1 61 7178
86 3.594381 2.172696 0 61 .7093
87 1.258599 2.678917 0 61 7011
88 3.366762 275279 1 62 7045
89 1.819034 1.153126 1 63 .7079
90 1.577250 479920 1 64 7111
91 3.019645 .926666 1 65 7143
92 780578 2.425029 0 65 7065
93 2.900008 2.840812 0 65 .6989
94 1.832320 .250902 1 66 7021
95 .063786 1.746580 1 67 7053
96 3.280760 2.891282 0 67 .6979
97 3.402475 810938 1 68 7010
98 562872 .936176 1 69 7041
99 3.650507 2.819044 0 69 .6970
100 473107 2.466539 0 69 .6800

Problem to find the area in a unit circle using Monte Carlo methods:

Technique is to generate random numbers within a square enclosing
the unit circle and to count those falling within the circle. The ratio
of points within to total points should equal the ratio of the respective

areas.

The formula used for generating the random coordinates is
=RAND()*2 -1. The output will be tested against the equation of a
circle to determine if on or within the circle. If so, a one will be returned.

These are summed and divided by number of iterations to get the ratio of areas.

Iterations Random x
0.119824
0.336329

-0.910826
0.455120
0.157420
0.701780
0.901156

-0.549261

-0.486138

10 -0.068013

11 -0.709646

12 0.556955

13 0.036719

14 -0.721910

15 0.300079

16 -0.543143

17 0.824751

18 -0.523303

19 0.554960

20 0.718037

21 0.134894

22 -0.592339

23 -0.466726

24 -0.057093

25 0.185993

26 -0.921430

27 -0.855011

28 0.411294

29 0.520029

30 0.564855

31 -0.923989

32 0.640371

33 -0.668327

34 -0.042826

35 -0.692494

[N

O O~NOOA~WN

Randomy Test
-0.783839
-0.487052
-0.800526
0.637132
0.446419
0.608744
0.674781
0.126575
0.057378
0.468676
0.993599
0.275696
-0.963359
0.539851
-0.505139
0.214887
0.301706
-0.938587
0.681223
0.268579
-0.781490
-0.943375
0.711284
-0.284109
-0.936294
-0.940360
-0.638633
-0.262082
-0.368176
-0.134339
-0.068810
-0.494969
0.788060
-0.175656
-0.557965

PRPORRPRRPRPRRPOORRRPRORRPRRORPRRRPRPRRPORRPRORRLRREPORLER

Points
within
Circle

O ~NO OGO, WDNDNERE

Ratio of
Points
1.000000
1.000000
0.666667
0.750000
0.800000
0.833333
0.714286
0.750000
0.777778
0.800000
0.727273
0.750000
0.769231
0.785714
0.800000
0.812500
0.823529
0.777778
0.789474
0.800000
0.809524
0.772727
0.782609
0.791667
0.800000
0.769231
0.740741
0.750000
0.758621
0.766667
0.774194
0.781250
0.757576
0.764706
0.771429

Area of
Circle
4.0000
4.0000
2.6667
3.0000
3.2000
3.3333
2.8571
3.0000
3.1111
3.2000
2.9091
3.0000
3.0769
3.1429
3.2000
3.2500
3.2941
3.1111
3.1579
3.2000
3.2381
3.0909
3.1304
3.1667
3.2000
3.0769
2.9630
3.0000
3.0345
3.0667
3.0968
3.1250
3.0303
3.0588
3.0857

Y

=

-1,-1

1,-1

Overn

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

0.649952
-0.061788
0.075072
0.203913
-0.840426
-0.745744
-0.735760
0.313275
0.308000
-0.350724
-0.047814
-0.343005
-0.037605
0.851008
-0.269980
-0.453619
0.399570
-0.858962
-0.841887
0.350078
-0.520649
0.090408
0.390743
-0.954918
0.082762
0.009124
0.361483
-0.877635
-0.097082
0.716546
-0.588548
0.251806
-0.971240
-0.009221
0.537813
0.855141
-0.233482
0.942629
-0.732521
-0.041220
-0.386048
0.338314
-0.360683
-0.509925
0.292731
-0.105638
0.004792
-0.707901
0.511064
0.145569
0.073969
-0.377713

-0.399398
-0.398773
-0.294290
-0.947486
0.596969
0.471524
0.520099
-0.899309
-0.713041
-0.038741
0.837515
-0.225889
-0.894163
0.173639
0.945028
-0.564914
0.596346
0.560507
0.247014
0.540786
-0.873468
0.315851
-0.095243
0.171231
-0.775320
0.029930
0.546451
-0.827667
0.979767
-0.378679
0.288752
-0.594990
-0.123046
-0.138467
0.288406
0.759530
-0.601515
-0.018242
0.330265
-0.395561
-0.954698
-0.991221
0.158748
0.446784
-0.665566
0.948130
-0.519003
0.131157
-0.416483
0.053116
0.870706
0.900416

PRPRPRPRRPRRPRPRRPRPRPROORRPRRRPORRPRPRRPRPRRPORRPRRPRRPRPORPRRORRREPRPRREPRPRRREPRPRREPRPORRLRRELSR

28
29
30
31
31
32
33
34
35
36
37
38
39
40
41
42
43
43
44
45
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58
58
59
60
61
62
62
62
63
64
65
66
67
68
69
70
71
72

0.777778
0.783784
0.789474
0.794872
0.775000
0.780488
0.785714
0.790698
0.795455
0.800000
0.804348
0.808511
0.812500
0.816327
0.820000
0.823529
0.826923
0.811321
0.814815
0.818182
0.803571
0.807018
0.810345
0.813559
0.816667
0.819672
0.822581
0.809524
0.812500
0.815385
0.818182
0.820896
0.823529
0.826087
0.828571
0.816901
0.819444
0.821918
0.824324
0.826667
0.815789
0.805195
0.807692
0.810127
0.812500
0.814815
0.817073
0.819277
0.821429
0.823529
0.825581
0.827586

3.1111
3.1351
3.1579
3.1795
3.1000
3.1220
3.1429
3.1628
3.1818
3.2000
3.2174
3.2340
3.2500
3.2653
3.2800
3.2941
3.3077
3.2453
3.2593
3.2727
3.2143
3.2281
3.2414
3.2542
3.2667
3.2787
3.2903
3.2381
3.2500
3.2615
3.2727
3.2836
3.2941
3.3043
3.3143
3.2676
3.2778
3.2877
3.2973
3.3067
3.2632
3.2208
3.2308
3.2405
3.2500
3.2593
3.2683
3.2771
3.2857
3.2941
3.3023
3.3103

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

-0.594176
-0.459154
0.688398
0.011324
0.523419
-0.553402
0.920525
0.130588
-0.955661
0.150047
0.421241
0.862935
0.353702
0.860308
-0.105964
0.674443
-0.014942
0.167429
0.566468
-0.658894
-0.920876
0.541111
0.433890
-0.937011
-0.220557
-0.408442
-0.885128
-0.883607
0.301879
0.408591
0.722174
-0.530240
-0.161942
0.973909
0.974209
-0.901133
0.350097
-0.761724
0.334884
-0.196280
-0.018803
0.715900
-0.846936
-0.034213
-0.483660
-0.440671
-0.662515
-0.732724
-0.880840
-0.896449
-0.487167
0.241807

-0.982067
-0.927781
-0.817474
-0.359627
0.918952
-0.535333
0.897028
0.930926
0.874629
0.035230
-0.565682
-0.687921
0.132316
-0.490612
-0.247403
0.128252
-0.324433
0.741283
-0.296821
-0.575231
0.503219
0.675696
-0.348372
0.038423
0.329006
-0.890674
-0.419235
0.522134
-0.821710
-0.805590
0.890036
0.931617
-0.005646
-0.816765
0.126736
0.394453
0.723227
-0.466153
-0.686348
0.758737
-0.240882
-0.721033
0.665466
0.416973
0.393762
0.590257
-0.137985
0.340566
-0.308861
0.395386
-0.041766
-0.787262

PRPRRPRPRRPRRPRPRRPRPOORRRPRPRRPRPRORPROORRORRPRPRRPRORRRPRPRREPRPRRPORROROROROOO

72
72
72
73
73
74
74
75
75
76
77
77
78
79
80
81
82
83
84
85
85
86
87
88
89
90
91
91
92
93
93
93
94
94
95
96
97
98
99
100
101
101
101
102
103
104
105
106
107
108
109
110

0.818182
0.808989
0.800000
0.802198
0.793478
0.795699
0.787234
0.789474
0.781250
0.783505
0.785714
0.777778
0.780000
0.782178
0.784314
0.786408
0.788462
0.790476
0.792453
0.794393
0.787037
0.788991
0.790909
0.792793
0.794643
0.796460
0.798246
0.791304
0.793103
0.794872
0.788136
0.781513
0.783333
0.776860
0.778689
0.780488
0.782258
0.784000
0.785714
0.787402
0.789063
0.782946
0.776923
0.778626
0.780303
0.781955
0.783582
0.785185
0.786765
0.788321
0.789855
0.791367

3.2727
3.2360
3.2000
3.2088
3.1739
3.1828
3.1489
3.1579
3.1250
3.1340
3.1429
3.1111
3.1200
3.1287
3.1373
3.1456
3.1538
3.1619
3.1698
3.1776
3.1481
3.1560
3.1636
3.1712
3.1786
3.1858
3.1930
3.1652
3.1724
3.1795
3.1525
3.1261
3.1333
3.1074
3.1148
3.1220
3.1290
3.1360
3.1429
3.1496
3.1563
3.1318
3.1077
3.1145
3.1212
3.1278
3.1343
3.1407
3.1471
3.1533
3.1594
3.1655

